
Alternative vacuum states in static space-times with horizons

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1977 J. Phys. A: Math. Gen. 10 917

(http://iopscience.iop.org/0305-4470/10/6/014)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 14:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/10/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 10, No. 6 ,  1977. Printed in Great Britain. @ 1977 

Alternative vacuum states in static space-times with horizons 

S A Fulling? 
Department of Mathematics, King’s College, University of London,, Strand, WC2R 2LS, 
UK 

Received 17 January 1977 

Abstract. The Minkowski, Schwarzschild, and de Sitter geometries possess Killing vectors 
which are time-like only in certain regions, near whose boundaries (the horizons) the 
isometries are analogous to Lorentz boosts. In quantum field theory the ground state of the 
generator of the time-like isometries cannot be ‘the physical vacuum’ because of its artificial 
singularities at the horizons. This paper develops several variants of the suggestion of 
Unruh, to define vacuum initial conditions on the horizon through an analytic property of 
normal-mode solutions which expresses ‘positive frequency’ with respect to null transla- 
tions on the horizon. A theory developed elsewhere of the energy-momentum tensor of the 
massless scalar field in two-dimensional models is applied to verify that Unruh’s condition 
corresponds to the absence of a flux of energy through an horizon surface, although there 
may be a flux parallel to the surface. A region with time-like isometries typically is bounded 
by four such surfaces, two of which may be the usual null infinities, 9*. In general, Unruh’s 
condition may be applied on two adjacent sides, forcing the appearance of a Hawking flux 
on the other two. In special cases, however, the opposite horizons can be in ‘equilibrium’, so 
that no radiation occurs. In particular, for two-dimensional de Sitter space the vacuum state 
thus obtained has a stress tensor proportional to the metric times the curvature scalar. If two 
horizons are not in equilibrium, then no state invariant under the isometries can yield a 
non-singular stress tensor. 

1. Introduction 

This paper extends, systematizes, and applies the work of Unruh (1976) (see also Israel 
1976, Gibbons and Perry 1977, Damour and Ruffini 1976) on various possible 
definitions of a physical vacuum state for a quantized scalar field in the Schwarzschild 
background metric. Near the horizon the geometry of the radius-time plane is 
essentially flat. In practice this fact is best exploited by adopting Kruskal coordinates, 
which are related to the usual Schwarzschild coordinates by the same transformation 
that relates Cartesian coordinates in Minkowski space to Rindler (1 966) coordinates 
(the Fermi coordinates of a uniformly accelerated observer, Manasse and Misner 1963). 
Unruh concludes that, as in flat space (Fulling 1973), it is naive to identify as the 
wavefunctions of physical particles those solutions of the field equation which contain 
only positive frequencies with respect to the time-like Killing vector of the exterior 
region; instead, the behaviour of solutions on the horizon with respect to Kruskal 
coordinates must be taken into account. He defines an initial vacuum state through 
conditions on the behaviour of normal-mode solutions in the far past both on the 
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horizon and at infinity; since these solutions do not satisfy the analogous conditions in 
the far future, the theory predicts a particle-creation phenomenon like that found by 
Hawking in spherically symmetric gravitational collapse (Hawking 1975). (A similar 
conclusion was reached by Hartle and Hawking (1976) (see also Hawking 1976) 
through a different argument.) 

The present work begins by generalizing the geometrical situation treated by 
Unruh; the essential ingredient is a Killing vector which is time-like in some regions and 
space-like in others, and which acts on the boundary between these regions (a null 
surface, the horizon) like a homogeneous Lorentz transformation. In particular, 
space-times are considered in which the spatial infinity is replaced by a second horizon; 
two-dimensional de Sitter space is the simplest example. 

Unruh’s treatment of vacuum states is then reviewed and extended. Another 
possible vacuum is pointed out, corresponding to characterization of ‘positive- 
frequency’ solutions entirely by their behaviour on the horizon (cf Israel 1976, Gibbons 
and Perry 1977). It is argued that this state most closely resembles the ground state of a 
black hole in equilibrium with its surroundings. 

Finally, the expectation value of the energy-momentum tensor of a massless field is 
calculated in the various proposed vacuum states in several two-dimensional space- 
times. The results illuminate the physical significance of the states, confirming the 
interpretations already given to them on apriori grounds. These calculations continue a 
programme in which the quantum energy-momentum tensor has been defined by a 
covariant point-splitting method and, for two-dimensional massless fields and other 
simple models, evaluated explicitly with the aid of the solution in normal modes allowed 
by conformal invariance of the field equation (De Witt 1975, Christensen 1975, 1976, 
Fulling and Davies 1976, Davies and Fulling 1977a, b, Davies eta1 1976, 1977, Davies 
1976, Fulling 1977, Hiscock 1977, Davies and Unruh 1977, Unruh 197.7, Bunch and 
Davies 1977). 

Hurried readers should note that the ratio of physics to technical formalism 
increases as the paper proceeds. The last section is a summary in the most physical 
terms. 

Conventions: h = c = 1 ; gm > 0 ;  R > 0 in the spatially closed two-dimensional de 
Sitter universe. 

2. Boost-like Killing vectors and the Kruskal-Rindler transformation 

2.1. Flat and other ultrastatic space-times 

Let us first consider space-time metria of the form 

ds2 = dt2 - dx - d o 2  

where dRZ is a two-dimensional positive-definite metric, independent of c and x. The 
simplest and most important special cases are 

d o 2  = (dy + (dy 2)2 (2.2) 
(yielding Minkowski space), and 

do2  =Li(dB2+sin2 8 d42), (2.3) 
where Lo is a length. The two-dimensional flat model (without a do2) is also of interest. 
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The geometry (2.1) is globally static, 8, being the time-like Killing vector. Furthermore, 
the norm of the Killing vector is constant (gm = 1); let us call a space-time of this sort 
ultrastatic. 

Define null coordinates 

V = t + x ,  U = ? - x ,  (2.4) 

so that dt2-dx2 = d V  dU. The (t, x)  plane (figure 1) is divided by the lines V =  0 and 
U = 0 into four parts, which will be labelled F( V >  0, U > 0), R( V >  0, U < 0), P( V <  0, 

G / 

Figwe 1. Coordinate systems associated with a boost-like Killing vector, which maps the 
(t, x )  plane as indicated by the arrows. 

U <  0), and L( V <  0, U > 0). In each quadrant introduce new null coordinates by 

V = a  em, U = *e*“, (2.5) 

v = v In1 VI, U = *lnlU(, (2.6) 

dVdU=e”’”dvdu=IVU(dvdu ,  (2.7) 

so that 

where f is the sign of U, and U is the sign of V. Finally, let 

m = r + p ,  T u  = 7 - p ,  

p = f ( c n , * u ) = 1 n J 1 / ~ I ” ~ = i n ( t ~ - x ~ 1 ” * ,  

so that 

tanh-’(xlt) in F and P, 
tanh-’(t/x) in R and L, (2.10) ~ = f ( m  TU)  = ln(V/UI*/* = 
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and therefore (cf Rindler 1966, Kruskal 1960) 

dt2 -dx2 = d V  d U  = eZp du du = TaeZP(dT2-dp2). (2.11) 

Thus in R and L, where TU = + 1, T is a time coordinate and p a space coordinate, while 
the reverse is true in F and P. In L and P the direction of these ‘times’ is the opposite of 
the natural one. The inverse transformation is 

(2.12a) t = *ep sinh 7, x = Fep cosh 7 

in L and R, respectively, while in F and P it is 

t = *eP cosh 7, x = *eP sinh 7. (2.12b) 

The metric (2.1) cum (2.1 1) is independent of 7. Thus the (7, p )  coordinate system 
makes explicit the existence of another Killing vector, a,., which generates a group of 
transformations mapping the hyperbolic surfaces (p = constant) into themselves and the 
radial surfaces (7 = constant) onto each other in the directions indicated by the arrows in 
figure 1. These are boosts (homogeneous Lorentz transformations) of the (t, x) plane. 
The Killing vector is time-like in regions R and L, space-like in F and P, and null on the 
surfaces V = 0 and U = 0 (where p = -CO and 7 = *CO). 

Clearly, p may be replaced in each quadrant by an arbitrary monotonic function of p 
without changing the essential character of the coordinate system. One reasonable 
alternative is z = ep, 

(2.13) 

z is the proper distance of the point from the origin, and the (7, z) system is the 
counterpart, for an indefinite metric, of ordinary plane polar coordinates. Another is 
r = rbue2p, 

dt2-dx2=4r dT2-r-’ dr2, (2.14) 

dt2 -dr2 = *:(T(.z~ dT2 -dz2); 

which, with t* = 27, maximizes the resemblance to the Schwarzschild metric (2.15). 

2.2. Schwarzschild -Kruskal and more general space -times 

The Schwarzschild metric is ordinarily written 

d s 2 = ( l - y  d f * 2 - ( 1 - y - 1  dr2-r2dR2, (2.15) 

where d o 2  is the spherical line element (2.3) with Lo = 1, and M is a length equal to the 
conventional mass times the gravitational constant. There is a coordinate singularity at 
r = 2M, inside which r becomes a time coordinate. The metric in the radius-time plane 
is made manifestly conformally flat by the transformation 

(2.16) r* = r + 2~ In1 1 - r / 2 ~ I ,  

dr 2M 
-= 1---, 
dr * r (2.17) 

ds2= 1-- (df*2-dr*2)-r2 dn2. ( ’3 (2.18) 
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In analogy to equations (2.5) and (2.8), let 

v = 4 ~ u  exp[(t* + r * ) / 4 ~  - 31, U = * 4 ~  exp[(r* - t*) /4~- ; ] .  (2.19) 

(2.20) 

so that t and x, defined by equations (2.4), are 4Me-l” times the coordinates 
introduced by Kruskal (1960). 

More generally, consider any static metric of the form 

d s 2 = Z 2 A R ( Z ) 2 d ? 2 - d Z 2 - B R ( Z ) 2  df12 (2 3 01, (2.21) 

where AR(0) = 1 and BR(0) ZO. The two-dimensional metric da’  is arbitrary (or 
absent) as in equation (2.1). If BR is a monotonic function of z, the coordinate r BR(z )  
may be preferred to z in some contexts (cf equation (2.15)). 

The first step in finding the analogue of Kruskal’s transformation for this geometry is 
to put the metric of the (7, z) plane into manifestly conformally flat form, by adopting a 
new spatial coordinate, p. One must have 

p = (zAR(z))-’ dz = In z +constant + . . . , I (2.22) 

where the dots indicate a term which vanishes as z + 0. Let us take the constant of 
integration as 0, so that 

ds2=e2pFR(-e2p)2(dT2-dp2) - B i  df12 (2.23) 

To the metric (2.23) we apply the Kruskal-Rindler transformation in precisely the 
form (2.4)-(2.12), with the signs appropriate to the region R, and obtain 

ds2 + B i  dfi2 =FR(+ vu)2 d V d U  = FR(t2 - X  2)2(dt2 - h2) (2.24) 

where U < 0 < V ( x  > It(). This space-time can be extended by attaching in the other 
three quadrants similar 7-independent metrics, defined by functions FF, Fp, and FL, all 
taking the value 1 at e*’ = 0, and BF, Bp, and BL. If FR and BR are analytic functions of 
e’’ near 0, then the unique extension which is analytic in the coordinates (t,  x )  or (V, U )  
is given by 

with FR(0) 1. 

(2.25) 

and similar conditions on the B’s. 
In all this discussion the possibility is not excluded that the space-time in a quadrant 

terminates at a genuine singularity at some finite value of p or z, as in the Schwarzschild 
case. 

The projection onto the ( t , x )  plane is as depicted in figure 1, with possible 
hyperbolic boundaries as in the familiar Kruskal diagram. The horizon is the null 
surface defined by any of the equations z = 0, p = -00, VU = 0, or, in the Schwarzschild 
case, r = 2M. On the horizon the norm of the Killing vector 8, vanishes; this is the 
extreme opposite of the ultrastatic situation considered earlier. 

We shall call ( t ,  x )  or (V, U )  Kruskal coordinates, while (v ,  U), (7, p ) ,  (7, z), or (7, r )  
will be called Rindler coordinates. Both are essentially unique. (The normalization 
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conventions imposed in writing equations (2.21), (2.23), and (2.24) have fixed the units 
of t and x and of 7 and p and also the additive constant in p. Because of the symmetry, 
the additive constant in 7 and the Lorentz frame in (f, x)  space cannot be specified 
absolutely; the choice (as unity) of constants in equations (2.5) relates these, however, 
so that 7 = 0 on the t and x axes.) It is clear that the Schwarzschild-Kruskal metric fits 
into this general framework with 

r = t*/4M, p = r*/4M +In 4M -4. (2.26) 

Remark: The arguments and values of transcendental functions (exp, In, etc) are 
customarily required to be dimensionless. In the present context this can be achieved 
by always associating a scale factor L, with the dimension of length, with the coordinates 
which measure lengths or times. L may be a characteristic length of the geometry, such 
as 4M in the Schwarzschild case (see equations (2.26) and (2.19)). On the other hand, L 
could be some conventional unit independent of the geometry, such as the metre or the 
Compton wavelength of the proton. The uncluttered general formulae of this section 
correspond to this second convention, with units chosen so that L = 1 numerically. That 
convention allows one to treat flat and curved space-times in a unified formalism, and to 
study the adiabatic limit of a curved geometry (Parker and Fulling 1974, Fulling and 
Parker 1974, § 6). 

2.3. de Sitter space-times and double black holes 

As an application of the foregoing formalism we consider the n-dimensional closed de 
Sitter universe of radius r. This can be defined as the manifold of points in (n + 1)- 
dimensional Minkowski space satisfying 

(x"2- f ( x i ) 2 - -  - r2 .  
j - 1  

(2.27) 

(In this connection r will always be a constant, not a coordinate.) Introducing locally 
static coordinates in, for example, the four-dimensional case by 

xo = r sinh ( $ / r )  cos(i/r), 

x2 = T sin(i/r) sin e sin 4, 
x4  = r cosh($/r) cos( i / r ) ,  

x = r sin(i/r) sin e cos (6, 

x3 = r sin(Z/r) cos e, (2.28) 

with 0 Q 2 s m, one finds that the region lxol < Ix" I (equivalently, (x ')' + . . . 
+(xn- ' )2<r2 )  is covered, and that the induced metric is 

ds2 = cos'(i /r)  d.i2 - d i 2  - r 2  sin2(2/r) dR2 

= [ 1 - (?/T)']  de2 -[ 1 - (?/r)']-' di2 - i2 dR2 (2.29) 
where 3 = r sin(i/r) and dR2 is the (U - 2)-dimensional spherical line element. Near the, 
centre (2 = i = 0) and the antipode (2 = m, i = 0 again) the picture is Cartesian to first 
order, but there is an horizon at 2 = m/2 (i = r ) .  To cast the metric into the form (2.21), 
take 

2 = 12 -&VI, 7 = 6/r,  zA&) = r sin ( z / r ) .  (2.30) 
For the region 2 sim it follows that 

p = -gd-'(i/r) +In 2r = In tan(z/2r) + In 2r, (2.31) 



Vacuum states in static space-times 923 

where gd is the Gudermannian function (Gradshteyn and Ryzhik 1965, 8 1.49), and 

e2pFR(-e2p)2=r2 sin2(z/r) = r 2  cosh-'(p -In 2r). (2.32) 

(Note : A superscript - 1 denotes a functional inverse, but all other exponents denote 
algebraic powers.) Applying the Kruskal-Rindler transformation for region R, one 
finds 

vy -2dVdU-r2tanh21n(-) I vu1 dn2. 
2r ds2 = ( 1 - r )  (2.33) 

If n = 2, the horizon degenerates to two disjoint pieces, and it is best to regard 2 as a 
periodic coordinate which covers a whole Cauchy surface as it varies from - r r  to r r .  A 
proper-distance coordinate ranging from 0 to m can be defined near each horizon: 

(2.34) 

Kruskal coordinates (spatially reflected in the right-hand case) are introduced through 

p 2  = In tan(zJ2r) +In 2r = -pl + 2 In 2r, (2.35) 

etc (see figure 2). (The subscripts 1 will sometimes be omitted for convenience.) The 
formulae given above still apply, with the angular variables omitted. In R the Kruskal 
coordinates for the left horizon are related to those for the right horizon by 

v1 = -4r2U;' > o ,  U1 = -4r2V;'<O. (2.36) 

If one approaches the right horizon via the second sheet (L), then the equalities (2.36) 
still hold but the quantities take the opposite signs. 

V I -  

Figure 2. Conformal diagram of two-dimensional de Sitter space-time. The left and right 
edges are identified. The arrows indicate the directions of increase of the null coordinates 
that vanish on the associated lines. Note that U1 + -a as the line Vz = 0 is approached from 
the upper left, but U ,  + +a as it is approached from the lower right; similarly for V1 on 
Uz = 0. Except for the numerical values of z1 and z2, the figure applies to any 'double black 
hole' model. 
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The analytic extension of the metric (2.33) into the regions 'inside' the left horizon 
coincides, not surprisingly, with the actual metric of the manifold (2.27) in the domain 
x ' > r,  as may be seen by writing the latter as 

ds2=dz2-sinhz(z/r)d~2 (2.37) 

and applying the Kruskal-Rindler transformation for regions of types P and F. (In this 
context one has O<z = 2r tanh-' (eZp/2r) <a, and hence O<ep <2r, or O <  VU = 
tZ  - x z  < 4r2, not $00.) 

The two-dimensional de Sitter universe has the conformal structure shown in figure 
2. The geometry resembles a two-dimensional static closed universe containing two 
black holes at antipodal points, with their second sheets joined to form another universe 
of the same kind. In fact, the analogy can be made stronger by replacing the de Sitter 
metric in the regions F1,2 and PI,, by the interior Kruskal metric (first term in equation 
(2.20)), with its singularity. If the parameters of the two metrics are related by 

r = 2M, (2.38) 

then the metric coefficient F(  VU) of this model is differentiable at the horizon. (This 
equivalence of cosmological and black-hole horizons does not exfend to four dimen- 
sions (cf Gibbons and Hawking 1977).) 

We shall see that the de Sitter space-time, as a model of two black hol'es interacting 
with a quantum field, is rather trivial. More general two-dimensional static models with 
the same horizon structure are easy to study. In what will be the region R, let 

ds = W(Z)' d? - dz ( O < Z  < a )  (2.39) 

(where the scale of + is arbitrary at first), and assume that 

(G, rj > 0). Then, following the general procedure, we take 

+ = Cirjri, c = Gr2/Clrl, 

so that, for some constant D > 0, 

p l=-cpz+lnD 

(exactly, for all z ) .  It follows that 

(2.40) 

(2.41) 

(2.42) 

or 

I VI1 = DI wc, 1 U1 1 = D I vzl.-c. (2.43) 
In this form equations (2.43) are valid in the whole analytic extension of the metric, with 
the second sheets identified as in figure 2. 
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The parameter c will be crucial in determining the compatibility of requirements of 
analyticity or positive frequency in the respective Kruskal coordinates of the two 
horizons. Note that this number is not determined by the intrinsic geometry in the 
immediate vicinity of each horizon, since the latter is given solely by the relative 
magnitude of the two leading terms in W ;  the factor q. is absorbable locally into the 
time coordinate. With the notation (2.40), the geometry near z j  = 0 is to the lowest 
non-trivial order that of a de Sitter space of radius rj or, equivalently, a Schwarzschild 
black hole of mass 4rj. Thus one may have two black holes of the same mass, but with 
c f 1; this situation may be likened to two equal point charges located in regions of 
constant but unequal electrostatic potential. 

A simple model with c f 1 is formed by joining halves of de Sitter universes of 
different radius at their centres: 

Cos2(i/rl) d i  - d i 2  

cos2(i/r2) d i  - d i 2  

( - 4 m, < i < O), 

( o<?  <+m2). 
(2.44) 

For this an explicit calculation yields for the formulae (2.43) 

1 vl/ = 2 r 1 ( 2 r 2 ) r z / r l / ~ 2 ( - r ~ ’ r i ,  (2.45) 

etc. For a non-trivial example with c = 1 we insert a flat strip into de Sitter space: 

[ d i 2 - d i 2  
(2.46) 

(2.47) 

etc. In § 4 the ‘vacuum’ expectation values of the energy-momentum tensor of a field 
will be calculated in these two models to demonstrate the physical significance of c. 

3. Candidates for vacuum state 

3.1. Field quantization 

With the geometrical notation under control, we can turn to physics. For simplicity we 
consider an Hermitian scalar field minimally coupled to the gravitational field, with no 
other external potentials. Mathematically, this is an operator-valued distribution on 
space-time, whose values are related among themselves in certain ways, expressed by a 
partial differential equation and by commutation relations. (The commutation rela- 
tions presuppose a distinction between the forward and backward directions of time, 
continuous over the space-time manifold. We take the forward direction to agree with 
the positive f direction in the Kruskal system. This does not prevent us, of course, from 
using for technical purposes time coordinates, T and p, which ‘run backwards’ in regions 
L and P.) The field equation and commutation rules determine, up to mathematical 
niceties, an abstract algebra of field ‘operators’, but the realization of the algebra as 
concrete operators on a Hilbert space is not unique. 

The following (which can be stated more abstractly (Ashtekar and Magnon 1975)) is 
the most common and convenient way to build such a representation in the case of an 
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Hermitian field satisfying a globally hyperbolic linear equation. In a general solution of 
the field equation, 

4(t, X) = I &(j)(4j(6 X ) U j  +4T(t, x ) U T ) ,  

(4,, 4j,) i I dr ( -g ) ’ /2g0~(4~a ,4 , , -4 , ia ,4 f )  = +a(,, j ’ ) ,  

(3.1) 

interpret the coefficients ai and uf as operators. (The solutions 4, are orthonormalized 
so that the field commutation relations are equivalent to [aj, U,,] = 0, [U,, U;,] = S ( j ,  j ’ ) ,  
the latter being the Dirac delta distribution with respect to the measure p. In particular, 
4j is a solution of positive nom-that is, 

(3.2) 

and 47 has negative norm.) Postulate a ‘vacuum’ vector defined (up to phase) by the 
property a,lO) = 0 for all j .  Then the Hilbert space is generated by acting formally on (0) 
with the elements of the field algebra. The set of 4, is far from unique; different choices 
may yield the same vacuum vector, different vectors in the same abstract Hilbert space, 
or unitarily inequivalent representations. 

Two points of view may be adopted towards this construction with respect to 
physical interpretation. According to the first, the U, and U ;  are to be annihilation and 
creation operators for physical particles, and the vacuum is the state of the system in 
which no particles are present at some particular time (which may be -CO). The proper 
choice of the +i must be made on the basis of a careful analysis of the physical meaning 
of the theory, perhaps by studying the interaction of the field with particle detectors (cf 
Unruh 1976). It is by no means clear that this kind of interpretation is possible under 
the most general conditions. 

The alternative approach is to forswear particle language and to treat the field aspect 
of nature as the fundamental one, operationally as well as formally. Then any apparatus 
of creation and annihilation operators is seen as just one way of labelling states of the 
field algebra, much like an arbitrarily chosen coordinate system in a curved manifold. 
Unfortunately, this philosophy does not offer relief from the responsibility to choose a 
‘good’ vacuum state in practice. The most promising avenue to contact between field 
theory and empirical physics is through currents (including the energy-momentum 
tensor), which are, formally, polynomials in the field and its derivatives. There is 
evidence (e.g. Parker and Fulling 1974) that these objects can be given meaning (as 
operator-valued distributions) by a plausible renormalization procedure only in certain 
‘physical’ representations of the field algebra. Thus there is the problem of deciding 
which vacuum states, if any, belong to physical representations. Apart from this, to see 
the physical meaning of a vacuum state defined by an expansion (3. l), from this point of 
view, one must calculate the expectation value in that state of all the relevant currents. 
On the other hand, if one does hold to a particle interpretation of the theory, then one 
expects.these expectation values to confirm that particle picture, since presumably the 
particles carry quantities such as energy and charge. 

If the space-time metric is static, then a natural choice of the basis solutions, +j  and 
47, is those which are eigenfunctions of the time-like Killing vector, a,. Their time 
dependence is of the form e-’”j‘, where o j > O  for a +j and w j < O  for a 47. The 
corresponding vacuum state is the ground state of a ‘Hamiltonian’ which generates 
7-translations. It does not follow, however, that this state has the full physical 
significance of the vacuum in special-relativistic field theories. In particular, if the 
space-time manifold terminates at a horizon beyond which it can be continued, and if 
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the extended manifold has a time-like Killing vector d,, then the vacuum relative to d, 
may be a different state from the vacuum relative to & - e v e n  if attention is confined to 
the field operators for the interior of the original manifold (Fulling 1973). Obviously, 
this phenomenon must be understood before the true significance of the &-static 
vacuum can be appreciated in cases, such as the Schwarzschild metric, where the 
extended manifold is not globally static. The major clarification of such questions 
recently achieved by Unruh (1976) will be elaborated here in the three contexts 
introduced in 5 2. 

3.2. The globally ultrastatic case 

The solutions of the scalar field equation of mass m in a space-time with the ultrastatic 
metric (2. l),  with -a < x  < Q), can be expanded in the generalized eigenfunctions 

E' = qf+p2+m2,  (3.3) (4,+-1/2 e-iJ3 ipx 
e +j, 

An is the Laplace-Beltrami operator (assumed self-adjoint) on the manifold with metric 
da*. The mode index j stands for a pair, p =pi  and t,hj, the latter a member of an 
orthonormal basis of eigenfunctions of An. In the case of flat space (2.2), the 
quantization (3.1) results in the conventional PoincarC-invariant vacuum if the q$ are 
the solutions (3.3) with E = Ej > 0, and hence the 47 are those with E < 0. The state 
defined in the same way for an arbitrary ultrastatic geometry is surely the 'physical 
vacuum state' for such a system if anything is. Even the most cautious skeptic will admit 
that it is a state of great interest, against which others can fruitfully be compared. 

Since E * p  always has the same sign as E (or vanishes), the plane waves (3.3) with 
E > 0 are analytic and bounded in the domain (di Sessa 1974) 

Imt<O, [Im X I  < [Im t ( .  (3.5) 
Equivalently (Unruh 1976), they are analytic and bounded in the lower half-planes of 
the variables V and U. These properties are shared by any normalizable solution 
formed by integrating the positive-frequency plane waves over a square-integrable 
coefficient function, f(p). On the other hand, a solution containing a negative- 
frequency component cannot be bounded in the lower half V and U planes (and need 
not be analytic there or on the real axes themselves). Thus we have a criterion for 
identifying purely positive-frequency solutions. 

Now consider the same field equation written in the coordinates (7, z )  of equation 
(2.13). (Recall that *v is -1 in regions R and L, + 1 in F and P.) The normal-mode 
solutions in each quadrant are proportional to 

e-iwTxj(z)+j, 
where 

This equation can be solved exactly. 

Singular case (q,? + m = 0): 
i kp k2- 2 Xj=e 7 p = In z,  - W .  (3.8) 
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Generic case: 

Zi, is a Bessel function of imaginary order if one is considering F or P, but a modified 
Bessel function of imaginary order in R or L. 

In F, where T is a spatial coordinate, a basis set of positive-norm solutions + j  for use 
in equation (3.1) will include all values (positive and negative) of U,  which is an ordinary 
Fourier transform variable on each hyperbola of constant time p ;  the index j stands for 

and w. There is, a priori, an infinite family of possible choices of the Zi, for these + j .  

However, if we require that the vacuum state be the 'physical' one associated with the 
global time-like Killing vector, then Zi, must be proportional to Elf:), since only that 
Bessel function has the proper behaviour in the complex domain (3.5) (di Sessa 1974). 
That is, the normalizable superpositions (wave packets) of the solutions 

(3.10) 

are precisely the normalizable-superpositions of the plane waves e-=' eipx with E = 
+(p2 +K')'/'. This conclusion also follows from an explicit integral representation of 
the Hankel function (cf Fulling er a1 1975, 0 4, Sommerfield 1974). In P the positive- 
frequency functions involve &) instead of &). 

Turning to the more interesting quadrant R, we see that a complete set of functions 
in the L2(p) space on a ray of constant time T is given by eikp(--oO < k < 00) in the singular 
case, and by Kilol (KeP) in the generic case (Titchmarsh 1962, 0 4.15). In the former 
case, waves with k > 0 propagate from the (past) horizon out to infinity, and those with 
k < 0 travel in from infinity to the future horizon. Wave packets formed from the Kilo,, 
however, propagate out of the horizon in the past and are reflected back over the 
horizon in the future. (Any linearly independent solution, such as &I, blows up at 
infinity.) The two cases correspond respectively to classical null trajectories (which 
reach 4' or 4-) and to trajectories time-like in the (t ,  x )  plane (which in general both 
enter and leave R via the horizon). 

If we regard R as a static universe with Killing vector a,, then the natural basis 
solutions +j  are those with w > 0 in equation (3.6), xi having the space dependence just 
described. Now a T ray in R and a T ray in L together constitute a Cauchy surface for the 
whole space-time manifold. (Special attention must be given to the origin if distribu- 
tions are allowed as initial data.) The general solution of the field equations, therefore, 
is a superposition of these +j  and +,? and the analogous functions in L. (In L the 
positive-norm solutions are those with w <O.) So we have the normalized basis 
solutions (a = + 1 in R, -1 in L) 

e-iut eru/'~i)(~z)+~ = e-ior e-ru/2H'_21,(KZ )+j 

in the singular case, and 

4j = +w = O(crx).rr-' sinh'/2(rry) e-i"vKi,(Kjz)+j, j = ( ~ ~ ~ ~ + j ) ~ O < ~ < ~  (3-12) 

in the generic case, along with their negative-norm conjugates. If +j is not real, it must 
be replaced by $7 when a = - 1. 

The solutions +v are not superpositions of the positive-frequency plane waves 
(3.3). That distinction belongs to the combinations 

(3.13) 
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(Note that the normalization (3.2),ispreserved, and that 4, is concentrated mostly in R, 
while &, is larger in L.) Indeed, &,. propagates into F as 

4 0 = -i 8-1/2 e- iw e-"zH?k(Kjz)+j ( - - O O < W = * ~ ~ < O O )  (3.14) 

(cf equation (3.10)). This was proved by di Sessa (1974) by analytic continuation from F 
into Land R through the complex domain (3.4). (See also Sommerfield (1974). Amore 
direct method would be to match wave packet solutions at the horizon using Cartesian 
coordinates, following Boulware (1979.) Unruh, however, estatlished equations 
(3.13) without considering region F at all, simply by requiring that &, be analytic and 
bounded in the lower half U plane when restricted to the horizon surface V = 0 (or vice 
versa). This is the prescription which generalizes to models without a global Killing 
vector. 

The Bogolubov transformation between the &, modes and the plane-wave modes 
(see Fulling 1973) has hereby been factored into two transformations: a unitary one 
relating eigenfunctions of a, to eigenfunctions of a, and a, and expressed by the Fourier 
integral representation of the Hankel functions, and a 'diagonal' one given by equations 
(3.13). The latter clearly does not have a Hilbert-Schmidt kernel, since y is a 
continuous variable. Therefore, the Fock representations built on the a, vacuum and on 
the a, vacuum are not unitarily equivalent. 

The situation in the singular case is similar. For each value of Ikl there are now four 
solutions of positive frequency with respect to t, which are obtained from those 
branches of the functions V k  and Uk (k positive or negative) which are analytic in the 
lower half-planes (that is, in evaluating the complex powers, -1 must be interpreted as 
e-irr if +1 is taken as e'). The normalized solutions are, in terms of the functions (3.1 1), 

&(+) = [2 sinh(7rlk l)]"2(em'k''z+ k+ +e"r'k''2 4 * -k -1 

(3.15b) 

(3.16) 
Here k is the 'momentum' in region R; that is, all the functions go as e+ikp there. 
However, the direction of motion of wave packets depends on the relative sign of k and 
the frequency with respect to T ;  U waves propagate to the right, V waves to tke left in x 
space. The functions $k(+)Aare ,larger in R than in L, and vice versa for &-). The 
conjugate basis functions 4t(m), negative in t frequency and in norm, are boundary 
values of branches of the power functions analytic in the upper half-planes. 

Remark: In the singular case, initial data on a constant-time hyperbola in F do not 
determine a unique solution throughout space-time (contrast equation (3.14)). Only 
the U-wave part in L and the V-wave part in R are determined. The other components 
are related to freely specifiable data on a hyperbola in P. 

3.3. The general case-one horizon 

Consider a space-time with a metric of the type (2.23)-(2.24), analytically extended to 
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all quadrants as in equations (2.25) (see also equation (2.11)). In particular, the 
geometry of L is identical to that of R, reflected. We may now omit the subscript Ron B 
and F. In the minimally coupled scalar field equation, separate variables in the Rindler 
system, writing 

(3.17) 

where the qj, as before, are the normalized eigenfunctions (e.g., spherical harmonics) in 
the two irrelevant coordinates, with eigenvalues 4; (equation (3.4)). One finds, as the 
generalization of equation (3.7), 

(3.18) 

4.  I = e -iw. J B ( p ) - ’ x j ( p ) + j ,  

-dzxj +B-’(d;B)xi TCT e 2p F 2 ( B-2 4i 2 +m2)xi = wixj .  2 

(B-’ has been factored out of x in order to free equation (3.18) of first derivatives.) 
Let us discuss the spectra of independent solutions in the various regions, starting 

with P and F. There the geometry is homogeneous in the spatial coordinate T, but is not 
static; the metric has the mathematical form characteristic of simple model cosmologies 
(cf Kantowski and Sachs 1966). Here w is an ordinary Fourier transform variable, and 
for each value of W(--CO<W <CO) there are two linearly independent solutions of 
equation (3.18), which can be chosen in accordance with the standard complex 
conjugation and orthonormalization conventions described in 0 3.1. In general (unlike 
the static case discussed in 0 3.2) there is no way to make this choice unique, although 
the arbitrariness can be cut down by requiring, in the limit of large frequency IwI, a 
‘positive-frequency’ behaviour in a generalized WKB approximation to xi (Parker 
and Fulling 1974). 

In what follows, a number of precise notions of positive frequency will be set forth 
in terms of the behaviour of the functions on the horizon. Each of these determines a 
definite quantum state of the field inside the horizon as well as outside. It will not be 
necessary, however, to consider the regions P and F further in order to give a complete 
mathematical and physical treatment of the field in the static regions outside the horizon 
(R and L). 

Outside the horizon one expects to expand the field in generalized eigenfunctions of 
the Schrodinger-type operator on the left-hand side of equation (3.18), with TU = 1. 
The analysis is an exercise in one-dimensional quantum scattering theory (e.g., Messiah 
1961, chap. 3). Barring pathological behaviour of the functions F and B in the 
positive-p direction (away from the horizon), the operator will be self-adjoint. General 
arguments then show that it is positive. (Change to the variable B-’x, and integrate by 
parts the inner product in L2(B2 dp).) Furthermore, in most cases of interest F and B 
will be analytic functions of e2’ at the horizon (see 02.2); this implies that the 
coefficients B-’ and e2pF2 vanish as p -* -CO. Consequently, the continuous 
spectrum of w 2  extends all the way down to 0, and there are no eigenvalues below 0. 
The spectral multiplicity for a given o2 depends on the behaviour of F and B in the 
positive direction and on the values of 4: and m2. That is, for some w (simple case) 
there will be only one well behaved eigenfunction xi, going like eiIwlP +e-iub+ia as 
p + --CO and falling off rapidly at large p, while for other w (double case) there will be two 
x, which may be chosen to have ‘incoming’ behaviour as p + --CO: 

-eib/P + R  e-ib/P ( 3 . 1 9 ~ )  

2 - T e-iblP. (3.19b) 

(A normalization factor has been omitted; the phase is arbitrary but fixed. It is 
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understood that at p = +a, 2 contains a left-moving wave of unit amplitude, and T is 
the resulting transmission coefficient.) Wave packets formed from ,f functions come up 
out of the past horizon and are partially transmitted to the right (large p )  and partially 
reflected back into the future horizon. Packets of the 2 type are analogous, but come 
originally from the right. Wave packets containing only simple w originate in the 
horizon and are totally reflected. These statements apply only if w in equation (3.17) is 
the positive root of 02; if w is negative, the motion is reversed in time. This observation 
implies (or follows from) the fact that z* and 2* form a basis alternative to (3.19), 
corresponding (for o > 0) to ‘outgoing’ wave packets, which have a definite direction of 
motion in thefuture. (Note that ‘incoming’ and ‘outgoing’ refer to the motion relative to 
the region R, not relative to the horizon. The terminology of Unruh (1976) is different.) 

In the generic case in P 3.2 the entire spectrum was simple, whereas the singular case 
was a degenerate example of a double spectrum, where no reflection occurred and 
hence there was no distinction between incoming and outgoing packets. For the 
Schwarzschild metric the spectrum is entirely double if m = 0 but otherwise it becomes 
simple for 0 < IwI < rn. (Massive particles of low energy can be gravitationally bound to 
the black hole.) The eigenfunctions have been studied by various authors (e.g., Persides 
1976 and other papers, Boulware 1975, Rowan and Stephenson 1976). Another 
interesting model is that in which the Schwarzschild metric terminates at a surface of 
constant r where the field is required to vanish; in other words, the black hole is located 
at the centre of a perfectly reflecting spherical shell. In this case all w are simple. 

Now we turn to the actual quantization of the scalar fieid which has the classical 
normal modes (3.17). We consider only Fock representations based on equation (3.1). 

The most obvious thing to do is to use those functions (3.17) for which w > O  as the 
‘positive-frequency’ elements in the field expansion (3. l), regarding the state annihi- 
lated by the corresponding uj operators as the ‘vacuum’. Thereby the field operator is 
defined throughout region R. It is trivial to extend this quantization to the other three 
quadrants, precisely as that was done for the globally static situation in the discussion 
leading up to equations (3.11) and (3.12). The labels on the basis functions, sum- 
marized by j ,  include U = f 1 to indicate whether the function is initially concentrated in 
R or in L, the positive frequency U,  and whatever quantum numbers are needed to label 
the ‘angular’ wavefunction qj. In addition, if w; is a double spectral value, we need 
another index, v, to distinguish between ,f (v = +1) and ,f (v = -1). 

For the special case of the Schwarzschild metric, this definition of the vacuum was 
probably first discussed explicitly by Blum (1973) and later was studied in detail by 
Boulware (1975). Unruh (1976) calls it the ‘7 definition’; in his notation for the mode 
functions, the sign of U appears as a subscript and the sign of v as a superscript, both on 
the left of the symbol 4. 

A definition of the vacuum enables one to calculate various quantities of physical 
interest, such as the Feynman propagator, the vacuum expectation value of the 
time-ordered product of the field operators at two points. (Boulware (1975) actually 
worked in the opposite direction, defining the Feynman function as a Green function for 
the field equation having a certain positive-frequency behaviour, and thence deducing 
properties of the vacuum state.) The 7 vacuum yields a propagator with a singularity or 
cusp on the horizon (see Boulware 1975, Unruh 1976). Furthermore, the function 
vanishes when one of the two points is in L and the other in R, no matter how small the 
geodesic distance between them. (A Feynman propagator does not vanish in general 
when its arguments are space-like separated.) This peculiar behaviour of the 7 
propagator at the horizon does not correspond to any singularity in the local geometry 
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there. Rather, it can be traced to the fact that the boost-like Killing vector, with respect 
to which 'positive frequency' has been defined, becomes null there. In fact, it is obvious 
that the r) vacuum is a strict analogue of the vacuum state of the representation of the 
free scalar field in two-dimensional Minkowski space constructed in Fulling (1973) (and 
Q 3.2 above), which is physically and mathematically inequivalent to the standard 
representation. 

As mentioned previously, there are two attitudes one might take toward this 
situation. If one expects to have a unique vacuum that is somehow fundamental, one 
might well suspect that the r) vacuum is physically unacceptable. For instance, near the 
apex of the horizon (where the four quadrants meet) the Feynman function and other 
such quantities are grossly different from their flat-space counterparts, even if space- 
time is essentially flat near that point (as when the Schwarzschild mass M or de Sitter 
radius r is very large). The construction of the vacuum is 'coordinate dependent' in the 
sense that it is based in an essential way on the Killing vector a,, and the singularity in the 
vacuum state corresponds to the coordinate singularity on the horizon. On the other 
hand, one might regard the r) vacuum as a possible quantum configuration of the field, 
but only one among many, of which others may be more plausible physically. (In 0 4 it 
will be shown that the r) vacuum contains an infinite build-up of energy at the horizon, 
which can be eliminated by a less singular choice of boundary conditions on the 
quantum state.) Either point of view motivates a search for alternative vacuum states. 

One alternative is Unruh's '( definition' of the vacuum. This is a generalization of 
the construction of the ordinary Minkowski-space vacuum out of Rindler normal 
modes through equations (3.13) or (3.15). Consider a wave packet in R formed from 
the mode functions +j  of equation (3.17), all xi being of the right-moving (v = -1) type 
whenever mode doubling occurs. In the notation of equations (3.19), 2 appears when 
w > O  and z* when w <O.  Examine the form of this solution near the past horizon 
(V = 0, U < 0). There the term involving the reflection coefficient R does not contri- 
bute, and the other term of each mode function goes, to lowest order, as 

(- e - i w ~  eiwp = e-iou = 

where equations (2.8) and (2.6) have been used. The analogy with the flat-space case 
suggests considering the solutions, defined over both R and L, 

&, = [2 ~ i n h ( ~ ) ] - " ~ [ e " / ~ ( ~ ~ ~ )  +e-"/2(14,)*], 

&y = [2 ~inh(~) ] - '~ ' [ e - " / ' (~+~)*  + e"/2(I+y)], 
(3.20) 

since these are analytic in the lower half U plane when restricted to the surface V =  0 
(and have positive norm). Here -y(=lwl) is always a positive number, and & and 
(&,)* are mode functions in R of the form just described, for, respectively, positive and 
negative w : 

(3 .21~)  

(The $j quantum numbers are suppressed on 4 and x; x is the Kruskal coordinate 
defined in 0 2.) Finally, 14,. and (+)* are the corresponding functions defined in L; 
these are 'outgoing' since they consist of waves entering L from its past null infinity and 
past horizon and joining to form a normalized wave going out over the future horizon 
( V =  0, U>O) (see figure 3). The explicit form of (I&)* is 

(14?)* = e - 9  @)- ' i@)qje(-x 1, 

;tpy = e-ivB (p)- ' i  (p)+j;.8(x). 

(3.21b) 
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Figure 3. Fluxes associated with the positive-norm basis solutions defining the 6 vacuum. 
Broken lines indicate negative-norm functions which are exponentially small relative to the 
accompanying positive-norm parts. 

which is a negative-norm function by itself, Compare equations (3.21) with equations 
(3.11) and (3.12). 

Although the analyticity properties provide a convenient technical means to charac- 
terize the functions, the real justification for choosing these functions as the 
fundamental 'positive-frequency' basis elements has greater geometrical and physical 
cogency. Since the components of the metric tensor depend only on e2p = - VU, the 
geometry of this space-time in the immediate vicinity of the horizon is everywhere the 
same, to lowest order, as at the horizon of some globally ultrastatic model (cf equations 
(2.23)-(2.24) and eqdations (2.1) and (2.11)). If aportion of the horizon is used aspartof 
a Cauchy surface, therefore, there should be no physical ambiguity in the notion of 
vacuum initial conditions on that portion, and the mathematical expression of that 
condition should take the same form as in the ultrastatic case, which is a trivial extension 
of the frat case. The 6 vacuum is based on the tilde-shaped Cauchy surface consisting of 
the future null infinity of region L, the surface V = 0 which is part of the horizon, and the 
past null infinity of region R. (This statement does not apply literally to a massive field, 
for which the asymptotic information needed to fix a solution cannot be expressed as 
data on null infinity. The type of information needed on the horizon is the same as in the 
massless case, however.) The values taken by a solution on the V = 0 surface determine 
the parts of the solution proportional to normal modes with v = -1. The natural 
coordinate on the surface is U, and in fact translation in U is an isometry of the surface, 
and an approximate isometry of the surrounding neighbourhood. This symmetry 
reflects the essentially ultrastatic nature of the geometry there. The theory of 0 3.2 can 
now be applied. A complete set of functions on the surface V = 0 is the family e-"u, and 
those with A > 0 are the positive-frequency ones. (Recall that when V = 0, the solutions 
(3.3) of the globally ultrastatic model reduce to this form with A =;(E + p ) . )  It follows 
that the positive-frequency solutions in general are those which are analytic in the lower 
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half U plane when V = 0, and thus one is led to the identification of the & as a basis of 
,$-positive-frequency solutions adapted to Rindler coordinates. The corresponding 
vacuum state is supposed to be one in which, in some sense, there are no particles in 
existence on V =  0. This interpretation, suitably qualified, will be buttressed by the 
energy calculations presented in § 4. 

The solutions &w (formed from i )  form wave packets which vanish at V = 0, so 
that analyticity there does not require them to be mixed among themselves like the 
;c$*~.  Indeed, the 4 definition specifies that they be unmixed, so that the &positive- 
frequency modes are all positive frequency in the usual sense (or vanishing) on the,past 
null infinity (F) of R (see figure 3). This prescription applies only to models which are 
asymptotically flat, so that tr is an affine parameter on 4-. 

The ,$ definition is asymmetric under time reversal, since it distinguishes the past 
horizon and past null infinity of R as the surface where the state of the field is to be made 
vacuous. In general (as will be seen in detail in 0 4) there will be radiation crossing the 
future horizon and null infinity of R. The time-reversed state is obtained by using 
outgoing basis functions in the construction instead of incoming ones, and studying their 
behaviour at U = 0 instead of V = 0. Furthermore, the time asymmetry of the 6 
definition is itself asymmetric with respect to R and L, since the construction uses 
incoming modes in one and outgoing modes in the other. Related to these features is 
the asymmetric role of V and U in the construction. We shall now discuss some other 
vacuum states with different symmetry properties. 

First, consider the possibility of requiring analyticity in the lower half V plane when 
U = 0, as well as the reverse (cf Hartle and Hawking 1976, Israel 1976, Gibbons and 
Perry 1977). This is the generalization of the treatment of the“singu1ar case’ of the 
ultrastatic model (equations (3.15)); let us call it the ‘ U  definition’. Near the future 
horizon (V=O, V>O) only the reflected and transmitted waves in equations (3.19) 
contribute to wave packets. Since in R 

e-iwp - - e-iou = v-io, 
the analytic continuation proceeds exactly as in the case of (-U)’”. (The two sign 
differences compensate.) Therefore, the &(-00 € U  € 0 0 )  are already analytic in the 
lower half V plane, and to make the v = +1 functions satisfy that condition it is 
necessary only- to combine them with the same coefficients as- appear in equations 
(3.20) : 

(3.22) 

and similarly for +&? (see figure 4). The vacuum state resulting from this construction 
is independent of the choice of incoming basis functions over outgoing ones (or any 
others), since all solutions with the same o are treated alike. The U vacuum is a state in 

Figure 4. Structure of the basis modes which replace IC& and ?,$J (figure 3) in the U 
definition. 
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which space-time is, to the greatest extent possible, empty in the neighbourhood of the 
entire horizon. However, one would expect in general to find evidence of some kind of 
excitation of the field at spatial or null infinity (see 0 4). In the case of a Schwarzschild 
black hole inside a reflecting spherical box, where the entire spectrum is simple and 
there is no spatial infinity, there is no distinction among the o vacuum, the 6 vacuum, 
and the time-reversed 6 vacuum. From a physical point of view, anything radiated by a 
black hole in such a situation must be reflected back into the hole, whereas a black hole 
in infinite space is free to radiate, to absorb incoming radiation, or to do various 
coherent combinations of these things. 

Returning to the 5 definition, we note that, as far as physics inside the region R is 
concerned, the important feature of equations (3.20) is the coefficients of the functions 
with support in R, i4,. and (;h)*. (In the 71 basis the corresponding coefficients are 1 
and 0.) Observables defined as localfunctions of the field will not have their expecta- 
tion values at points in R changed if the L-functions in equations (3.20) are replaced by 
their time reversals. That is, instead of the function (3.21b) we use 

e - ’ V  -‘f *$je( - x ). 

(If preferred, qj could be replaced by @.> Similarly, the basis mode “4,. is replaced by 
its time reversal, which is purely incoming from the past null infinity of L. This will be 
called the ‘A definition’ (see figure 5). These functions cannot be characterized by a. 

Figure 5. Structure of the basis modes defining the h vacuum. 

simple analyticity property. Nevertheless, it seems physically clear that the resulting 
state is ‘vacuous’ on the W-shaped Cauchy surface consisting of the past null infinities 
and past horizons of L and R. (One should not say ‘devoid of particles’, because, as is 
well known for the case of flat space-time (Newton and Wigner 1949, Wightman and 
Schweber 1955), the relation between particles and fields is non-local; it is unlikely that 
the concept of a particle at a given point-if it makes sense at all in curved space-is 
independent of the behaviour of the positive-frequency normal-mode functions in 
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other regions. We have in mind, rather, a concept of vacuity based on the behaviour of 
local functions of the field, such as the energy-momentum tensor. Here, the point is 
that conditions in Rare  identical for the 5 vacuum and the A vacuum, as far as the field is 
concerned.) The A definition is discussed (but not named) in Unruh (1976). 

3.4. The general case-two horizons 

In the situation of 0 2.3, where the range of p ends at the right in another horizon, all the 
eigenfrequencies of equation (3.18) are of the double type. The analytic extension of 
the manifold R, if we choose to identify the L-regions beyond the two horizons, has the 
structure indicated in figure 2. 

As in the case of the generalized Schwarzschild metrics discussed in 0 3.3, there is a 
variety of natural notions of 'positive frequency', each leading to a state which might be 
distinguished as 'the vacuum'. The 77 vacuum is based on solutions in R of positive 
frequency with respect to the Rindler coordinates, and solutions in L of negative 
frequency. The U vacuum is based on solutions of positive frequency with respect to the 
left horizon's Kruskal coordinates; such solutions are analytic in the lower half U1 plane 
on the surface V1 = 0 and analytic in the lower half VI plane on the surface U1 = 0. The 
6 vacuum is supposed to be based on functions which are positive-frequency functions 
on both past horizons of R; these must be analytic in the lower half U, plane on V 2  = 0, 
as well as in the lower half U1 plane on V1 = 0. (The right-hand horizon has its own 
proper set of Kruskal coordinates (V2,  U2)-in contrast to the null infinity of the 
Schwarzschild model, where the natural coordinates were the Rindler (U, U), because 
they asymptotically become Cartesiai there.) 

We consider now the U functions, which are positive-frequency functions 
everywhere near the left horizon, and ask how they behave near the right horizon. 
These functions are defined in equations (3.20) and (3.22). In R they are (see equation 
(3.2 1 a ) )  

1 -  -9, = @U = [2 sinh(.rr/~l)]- '/~ err"' e-ioTIB-lE 4j](*),  
+ A  (3.23) 

where '(*)' indicates that the bracketed functions are to be complex-conjugated if w is 
negative, but not if w is positive. Near the right horizon (PI + +a) we have, in analogy 
with equations (3.19) 

2 - 7'' e i l U I P ~  - e- i l~lpl  +R' ei/ol~l (3.24) 

When these are substituted into equations (3.23), one effect of '(*)' is to remove the 
absolute-value signs from W .  Therefore, as the right past horizon ( V 2 =  0, U,<O) is 
approached, we get 

+U = [2 ~inh(.rrlol)]-'/~ errW/' e-iwTlg-l& 4j](*), 

and -4, = 0, where equation (2.42) or equation (2.43) has been used. Similarly, near 
the right future horizon (U,  = 0, V2 > 0) we find 

(3.253) 
The numerical coefficients in "4, and "$-, still differ by the factor e". 

On the other hand, equations (3.25) show that if "4, and "d-, had been constructed 
by analytic continuation through the right-hand horizon instead of the left, then their 

- e-iwTl e i w l  - 
- DiUKiCW. 
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magnitudes in region R would have differed by a factor e“‘. If c # 1, therefore, the 
conditions of positive frequency at the two horizons are inconsistent. Vacuum condi- 
tions can be imposed on any two adjacent sides of R, but not on all four simultaneously 
(see figure 2). Thus one has the 6 vacuum, the time-reversed 6 vacuum, the U vacuum, 
and the space reflection of the U vacuum (based on functions of positive frequency 
around the right horizon). The last of these will be denoted by A The situation is not 
very different from that for the Schwarzschild metric. The 6 vacuum will exhibit a 
radiation process of the Hawking type, with fluxes of matter crossing both future 
horizons (see 0 4 for a more precise description). The o vacuum represents the right 
horizon as surrounded by a stationary cloud of matter, which may be regarded as 
composed of coherent radiation going inward and outward. 

The ‘Planckian’ form of the square of the coefficient [2 s i n h ( ~ y ) ] - ~ ’ ~  e--/* = 
(e’“ - 1)-’I2 in the Bogolubov transformations (3.20) and (3.22) leads to the ‘thermo- 
dynamic’ interpretation of the Hawking process. Applying that language to the present 
case of two horizons with c # 1, one says that non-trivial effects occur because the two 
horizons have different temperatures and hence cannot be in equilibrium. The ratio of 
the temperature of the left horizon to that of the right horizon is 

T,/T2 = C .  (3.26) 

(See equation (2.41), and recall that the temperature of an horizon is inversely 
proportional to its parameter M or r (Hawking 1975, Gibbons and Hawking 1977).) 
The absolute magnitudes of the temperatures do not appear in our formulae because 
our notational conventions (see 3 2.2) make T and p, and hence o and y, effectively 
dimensionless numbers. Recall from 02.3 that c depends not only on the local 
geometry of the two horizons but also on how they are fitted together globally. A 
black hole of mass Minside a large, massive galaxy has a lower temperature than a black 
hole of identical mass far outside the galaxy. 

If c = 1, then one sees that function (3.216) is the proper continuation of function 
( 3 . 2 1 ~ )  into L through either the left or the right horizon. (That is, the phases, as well as 
the weight factor e--, match up, so that single-valued 6 functions are well defined.) In 
this case, therefore, the 6 vacuum, the o vacuum, and their space and time reflections 
are all the same state. The two black holes are in equilibrium. 

We are not compelled, however, to identify the second sheets reached through the 
two horizons. The analytically extended manifold might be a covering space of the 
space considered up to now, having sheets. . . , L1, R,, Lz, RZ, L3,.  . . , with, possibly, 
RN 3 RI for some N. Consider such a many-sheeted space-time with c = 1. For each y 
and Y there are as many positive-norm functions in a basis as there are sheets (2N). To 
define a 6-0 -vacuum one would require the basis functions to be analytic (in the by now 
familiar sense) on all horizons. From the previous discussion, however, it is clear that all 
solutions with this property will be periodic, taking the same form in R1, R2, . . . . There 
are only two such functions for each y and v, analogous to ’4, and ”&, in the 
two-sheeted case. So it is impossible to choose a complete basis of solutions consisting 
of functions with the desired analytic property and their complex conjugates. Strangely, 
there is nu 6 vacuum for such a model. (This may be related to a previous observation 
(Davies and Fulling 1977a) on the difficulty of finding vacuum states, invariant under 
the de Sitter group, for the covering spaces of two-dimensional de Sitter space.) 

However, a construction like that of the A vacuum in 0 2.3 is possible here. One can 
reproduce ‘vacuum conditions’ in the interior of any sheet (say R,) by choosing a 
positive-norm basis which involves the functions !& and (:A)* there always in the 
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ratio e'''', as in equations (3.20) and (3.22). A definite global extension is not needed in 
order to discuss the possible quantum states for the algebra of field observables inside 
RI. 

4. Expectation values of the stress tensor of a two-dimensional massless field 

4.  I. Conformal uacuum states 

The physical significance of the various quantum states defined in § 3 can be investi- 
gated easily in the special case of massless scalar fields in two-dimensional space-times. 
The field equations of these models can be solved explicitly by conformal mappings 
onto flat space-time: in a conformal null coordinate system, in which the metric takes 
the form 

(4.1) 

the normal modes are just plane waves, proportional to e-i0b or e-i0ri. As a conse- 
quence, the solutions involve no scattering; any (classical) radiation present simply 
propagates either to the left or to the right along null rays. The quantum theories are not 
trivial, however, since the curvature of space-time may cause creation or annihilation of 
radiation. We shall adopt the point of view of the references cited at the end of 0 1, that 
most of the relevant physics is summarized in the 'renormalized' energy-momentum 
tensor, which can be calculated with the aid of a covariant procedure of regularization 
and subtraction of state-independent divergent terms. In Davies and Fulling (1977a) it 
is shown that every general solution of the two-dimensional massless field equation by 
separation of variables in a coordinate system of the type (4.1) gives rise, through 
equation (3.1), to a vacuum state in which the vacuum expectation value of the stress 
tensor is 

& = g,, d x ,  dx ' = C dfi dz2, 

(T,J = e,, - (484-'~g,, ,  (4.2) 

(4.4) 
The form (4.3) applies when there are no spatial boundary conditions making the 
spectrum of normal modes discrete. 

The tensor (4.2) satisfies 

V,T", = 0, T," = R / 2 4 ~ ;  (4.5) 
the trace is the same for all these conformal vacuum states, since R is just the curvature 
scalar of the manifold. Therefore, the difference, A",, between the expectation values 
of T,, in two states is conserved and traceless, hence satisfies 

auA,, = 0, a, A,, = o ( 4 . 6 ~ )  
in any conformal null coordinate system (see Davies and Fulling 1977a, equations 
(2.36)). The expectation value of T,, for a general state in the Fock space associated 
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with a conformal vacuum differs from the (T,,,,) for that vacuum by the formal 
expectation value of the correspondingly normal ordered quantity, : T,,,,:, in that state, 
which, when finite, is conserved and traceless. Consequently, equations (4.5) and (4.6) 
hold for all states for which the expectation value of TMy has been defined. The stress 
tensors of two states differ only by the contribution of a certain distribution of 
conserved, massless radiation: 

A v v  = A v v ( u ) ,  A U U  = A U U b ) .  (4.66) 

Knowing (T,,,,) for any one state, therefore, one can easily obtain it for another state 
from sufficient initial data. 

In the specific situation treated in this paper, the 7 vacuum corresponds to choosing 
(a, E) to be the Rindler coordinates, (U, U ) ,  for which 7 = i ( u  + U )  is the coordinate 
conjugate to the Killing vector. Since C is then a function only of p = $(v - U ) ,  one has 

el: = e:,, = - ( 4 8 1 ~ ) - ~ c ' / ~ a ; ( c - ~ / ~ )  = -(1921T)-1c-2[3(a,c)2 - 2ca;cl. (4.7) 

c = eZpH( - eZp), H = F', (4.8) 

Referring to equation (2.23), we write (for quadrant R) 

and obtain 

(4.9) 

where the argument of H is -ezp = VU. 
On the other hand, if (a, z7) are the Kruskal coordinates, (V,  U), then the positive- 

frequency normal modes satisfy the analyticity conditions which are used to charac- 
terize the U vacuum. (Indeed, the initial motivation of those conditions was that they 
are satisfied by the Kruskal plane waves of positive frequency in ultrastatic models.) 
Therefore, the stress tensor of the U vacuum is given by equations (4.2) and (4.3) with 
C = H (  VU): 

(4.10) 

Comparing with equation (4.9) with the aid of the tensor transformation formulae 

Tw = V-2Tvv, Tu, = U-'TUu, 
we find that 

(4.11) 

A:: - 6;" = ( 4 8 1 ~ ) ~ '  = Ai:. (4.12) 
The constancy of A; in Rindler coordinates is a consequence of equations (4.6b) and 
the fact that 0, and 6, must be independent of T for both the 7 vacuum and the U 

vacuum. (Both states are invariant under translations in 7, which are Lorentz boosts 

v+av, U-* u/a 
in Kruskal coordinates.) 

The application of the general formulae (4.3) to the Kruskal coordinate system is 
strictly correct only if the Kruskal plane waves are indeed normal modes, satisfying the 
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field equation globally. One must check that there is no trouble caused by a boundary 
condition at the far right edge of the region R (and the left edge of the postulated 
symmetric extension, L). In most of the concrete examples mentioned in § 3 all is well, 
because p, and hence eZp = x z  - t2 ,  range all the way to +a, so that the range of x on a 
Cauchy surface is -a < x <CO and the initial data can be Fourier transformed in the 
usual way to express any solution in terms of plane waves. (The possibility of a 
singularity at some finite p in regions P and F is not relevant.) In the case of 'a black hole 
in a box', however, p terminates in R at some finite value where a boundary condition is 
imposed. In ( t , x )  space this boundary becomes a 'moving mirror' with trajectory 
x2-t*=constant, so that the field equation cannot be solved by separation of 
variables in the Kruskal system. Nevertheless, in § 4.2 it will become clear that 
equations (4.10) are valid even in systems of this nature. This fact is a generalization of 
the observation in Fulling and Davies (1976) that in flat space a uniformly accelerated 
mirror does not radiate. 

4.2. Summation of boost-invariant normal modes 

Equations (4.3) do not apply to the 5 vacuum, since that state cannot be defined in terms 
of plane-wave normal modes in any one conformal coordinate system. Instead, we shall 
calculate (TWy)' by evaluating the appropriate sum over the normal modes 6, and & 
(see § 3.3 and figure 3). The similar calculation using the modes of figure 4 gives an 
alternative, and more general, derivation of (TFy)". We confine attention to the region 
R, for brevity. 

Following precisely the steps in Davies and Fulling (1977a) (which should be 
consulted for details), we calculate the (-vacuum expectation value of the point-split 
stress tensor, 

(4.13) 

T u u ( 4 i ,  4 T ) e  =bu,u-,(a,4i(X,>au4T(x-,)+au4T(x,)au4i(X-,)), (4.14) 

and a similar equation for Tu,, where i runs over the positive-norm half of a complete 
orthonormal set of normal modes, x*,  are points displaced a distance E from x = ( U ,  U )  
along a geodesic, and U,, and V,, are factors introduced by the parallel transport of 
tensor indices. The only difference from Davies and Fulling (1977a) is in the set of 
normal modes considered. Let us list the normal modes for the ( vacuum of an 
asymptotically flat model. First, we have equation (3.20), specialized to the confor- 
mally solvable case and to quadrant R: 

& = [2 s inh (~ /o l ) ] - ' /~  ewo/2 ( 4 ~ / o I ) - " ~  e-iou (-a<o<a); (4.15) 

these contribute only to the sum for (TUu),. Second, we have 

(U ' O), (4.16) 

concen- 

+4 = (4To)-1/2 e-ioo 
+ o  

which contributes only to Tu,. Finally, there is ?t$-@, the counterpart of 
trated in L, which contributes to neither sum since we consider only x in R. We find 

Tu, (&, 42) = [ 8 ~ ( o l s i n h ( ~ ( o  I)]-' ewoo2U,U-, Re(e-i"Au), 
(4.17) 

Tu, (I&, T4:) = ( 4 ~ o ) - ' o ~ V ,  V-, Re(e-iwAu) 
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(Au = U, -U-, = O(E) ,  etc), and hence 

1 
4T (Tu,)€ = - U,U-, Re dw w coth(Tw) eiwAu (4.18) 

1 m 1 
(Tu"), =-Vv,V-, Re(l0 dww eiwAu) = --V,V-,(AZJ)-~. (4.19) 

4T 4T 

Thus ( T,,), is the same as the result of Davies and Fulling (1977a), which applies to the 
r] vacuum. From Gradshteyn and Ryzhik (1965, equation (3.551.3) and 0 9.5) we 
obtain 

(T,,), = (4T3)-lu,u-~r(2)(~5(2, ~ P ) - P - * )  (p = -iAu/T) 

= - ( 4 ~ ) - '  U,U-,(AU)-~ + ( 4 8 ~ ) ~ '  U,U-, + ~ ( A U ) .  (4.20) 

The first term in the final line of equation (4.20) is just the (T,,), of the 7 vacuum. Since 
U,U-, = 1 + O(Au), all the divergences as E + 0 are concentrated in that term. There- 
fore, if we define the limit E + 0 by the same subtraction unsatz used for the r] vacuum 
(see Davies and Fulling 1977a), the conclusion of the calculation is 

(TJf=(TpJ+A$,  
(4.21) 

Clearly, the analogous calculation for the U vacuum reproduces equations (4.12). 
That calculation applies regardless of whether the boundary conditions permit the field 
equation to be solved in terms of Kruskal plane waves. 

applies to asymptotically flat cases, such as 
the Schwarzschild metric. For double black hole models the 6 vacuum is defined 
differently, and the analogous argument shows that e:, = 13:". (The 17 vacuum is the one 
constructed by imposing the positive-frequency condition at the right-hand horizon.) 

A$ = 0, A 2  = ( 4 8 ~ ) - '  = Ai:, A 2  = 0. 

The result (4.21), or et, = e;,, etu = 

4.3. Minko wski space 

We shall examine the physical significance of the foregoing general results in particular 
cases, starting with flat space. Interpretation is easier when one considers the compo- 
nents of the energy-momentum tensor relative to an orthonormal frame at each point. 
To display time-translation symmetry of any of our models, one chooses the time axis of 
the orthonormal tetrad to point along the Killing vector, a,. That is, one examines the 
quantities 

$rr=e-2pH-1(Tuu + Tu,) = JPe, JTP =e-2pH-1(T,, --Tu,). (4.22) 

These expressions can be misleading, however, at points near the horizon. Since the 
Killing vector becomes null there, tensor components in that frame suffer 'infinite 
redshifts and blueshifts', so that a quantity which is physically finite on the horizon may 
appear to approach infinity or zero there, and vice versa (Fulling 1977). Therefore, one 
uses instead a frame aligned with the Kruskal coordinate axes: 

(4.23) 

But since H is normalized to unity on the horizon, in practice a discussion of the null 
components usually suffices. A non-zero Tu, can be interpreted as a rightward flux of 
energy (negutiue energy if Tu, 

Jn = H -  ( Tw + T"U) = JiX, J& =HH-l(Tw- Tuu). 

0). Similarly, Tw represents a flux to the left. 



942 S A  Fulling 

To obtain the full physical stress tensor one should add to equations (4.22) and 

- ( 4 8 ~ ) - ' & , ,  (4.24) 

(4.23) the trace term 

where 

goo=-g11=1, 601 = 0 (4.25) 

in any orthonormal frame. Since this component of the expectation value is the same 
for all states, it can be ignored in the following discussions. 

In two-dimensional Minkowski space, the U vacuum is the conventional Poincar6- 
invariant vacuum. Since H= 1, our formulae give (Tpy)U = 0, as expected. For the 7) 
vacuum we find 

e*:= -(24m)-' e-2p = -(24m2)-', e:p = 0, (4.26) 

as anticipated from related work (Fulling and Davies 1976, Candelas and Raine 1976). 
As in equation (2.13), z is the proper distance from the focus of the Rindler coordinates 
(incorrectly described above equation (6.10) of Fulling and Davies (1976) as the 
distance from the mirror). Except for sign, the energy-momentum at each point is that 
of a gas of massless particles in its rest frame. The alternative representation, 

e",= - ( 4 8 ~ V ) - ' ,  e",,= - ( 4 8 ~ u ~ ) - ' ,  (4.27) 

decomposes this into fluxes of negative energy running to the left and to the right, the 
strength of each beam becoming infinite as one approaches the part of the horizon 
parallel to it. 

An alternative interpretation, perhaps not incompatible with a well defined Tpy 
operator, is that the 77 definition of positive frequency should be used to analyse local 
experiments conducted by an observer whose worldline is one of the Killing orbits 
( z  = constant)-i.e., an observer with the uniform acceleration z-'. Various arguments 
can be given (Unruh 1976, Israel 1976, Davies 1975) that this observer should detect 
particles with a Planck spectrum of 77-energies corresponding to a temperature of 
kT= (27rz)-', if the state of the field is the U vacuum. The difference between the 
stresses of the U vacuum and the 7 vacuum, 

= +(24m2)-', A: = 0, (4.28) 

can be regarded as the energy-momentum associated with this effective thermal bath, 
since in two dimensions the energy density of massless radiation in equilibrium at kT is 
(cf De Witt 1975, equation (137)) 

A 

(4.29) 

In Minkowski space the a f h e  parameter on 9- (past null infinity) is (a multiple of) 
V, not U. Therefore, the 6 vacuum, defined in the geometrical spirit of Unruh's 
definition for the Schwarzschild metric, is just the ordinary U vacuum. The state 
constructed from left-moving U modes and right-moving 77 modes has no apparent 
physical significance in this case. 

4.4. The two-dimensional Schwarzschild metric 

The expressions given in Davies et al (1976) for the vacuum expectation value of Tpu 
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outside a static star also provide (T,")' for the region R of the full Schwarzschild- 
Kruskal manifold. (The covariant tensor components in Davies et a1 (1976) must be 
multiplied by 16M2 to match the normalization of coordinates in the present paper- 
see equations (2.26).) We have 

err - 2 ( 1 - 9 - ' [ 3 ( 3 ~ - 2 ( 3 ~ ] ,  - 24rM2 e*,:,=o. (4.30) 

The noteworthy features of 6: are that it is negative and approaches zero like r -3  as 
r + 00 (cf equations (4.26)). 

One can obtain (T,,)" and (T,,)' with the help of the difference formulae (4.12) and 
(4.21). One has 

B L = - - - ( I - ~ )  1 2M -l  [3(7)4-2(T) M 3  +-It 1 1 
24rM2 32 768rM2' 

(4.31) 
1 

768rM2' 

where the limit as r -* 00 is shown. 'The expressions (4.31) are completely equivalent to 
those found in Davies et a1 (1976) and Davies (1976) for the late-time limit of (Tw,) 
outside two-dimensional collapsing bodies. This confirms Unruh's (1976) claim that, 
given a full Schwarzschild solution with past horizon, the (-type initial conditions most 
closely reproduce the situation expected in the case of a collapsing star (Hawking 1975). 
Similarly, one finds 

6; = J-( 1 - 9 -'[ 3 ( !34 - 2 (3 + '1 .+ 
1 

(4.32) 24rM2 16 384rM2' 
A e:p = 0 ;  

these formulae also apply to a black hole inside a reflecting spherical box, and, at least 
approximately for small r - 2M, to the case of two black holes in equilibrium in the sense 
of 0 2.4. The LJ vacuum is the state which corresponds most closely to equilibrium of the 
black hole with its surroundings. (When the reaction of the scalar field on the metric is 
taken into account, the equilibrium may be unstable.) The limit values in equations 
(4.31) and (4.32) correspond, via equation (4.29), to black-body emission from the 
black hole and to equilibrium thermal radiation, respectively, with kT = (8rM)-'. 

The discussion in Fulling (1977) of the behaviour of the radiation from a collapsing 
body near the horizon applies also to (T,,)q except that now there is a real flux 
singularity on the past horizon. Near r = 2M we have 

(4.33) 

By construction of the vacuum, there is no flux into R across the past horizon (i.e., 
Ofu= 0 on V =  0). However, there is a flux parallel to the past horizon which becomes 
infinite on the horizon itself. This singularity is forced by the geometry of the 
space-time and the other defining boundary condition, namely that Of, = 0 on 4-.  

On the other hand, (T,,)" is bounded everywhere in R. We have 

e",= (2o48d4) - lu2  when V =  0, 

e;"= ( 2 0 4 8 ~ ~ ~ ) - 1 ~ 2  when U = 0. 
(4.34) 
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Thus e;, is zero at the apex of the horizon, a point which we may take to be truly empty 
of matter, although the expectation value of the stress tensor there still hcs the trace 
component (4.24), with R = 4Mr-3. Elsewhere, the flux parallel to the nearest part of 
the horizon is finite but not zero. On the surfaces at infinity, $*, 6;” approaches a finite, 
constant value, as indicated in equations (4.32). 

The various expectation values of T,, could be calculated in regions L, F, and P by 
similar methods. However, there is some question, except in the case of the U vacuum, 
whether ( T , , )  is well defined, as a distribution, on test functions whose support 
intersects the horizon itself, and, if so, whether it has a singularity concentrated there 
(e.g., TWoc6(V)). The latter seems especially likely for the A vacuum, which was 
defined in D3.3 by fastening together mode functions from the two sheets of the 
manifold with a rather arbitrary relative phase. 

Many of the conclusions of this subsection have been extended to four dimensions 
(Christensen and Fulling 1977, P Candelas, work in progress). 

4.5. de Sitter space 

For two-dimensional de Sitter space-time in a Kruskal coordinate system (equation 
(2.33)) we have C1/’ = H-*l2 = 1 -fVUr-’, and hence, from equations (4.3), 

e;” = 0. (4.35) 

So (T,,)” everywhere has the form (4.24)-(4.25), with R = 2rF’; i.e., 

(f”) = = -(24~;*)-’, ( fTP) = 0. (4.36) 

(Here r is not a coordinate, but a constant, the radius of the de Sitter hyperboloid.) The 
construction of the U vacuum is based on a distinguished point ( V  = 0, U = 0), or rather 
a distinguished antipodal pair of points. Nevertheless, the expectation value of the 
energy-momentum tensor in this state is invariant under the SOO(2, 1) isometry group of 
the space. All points and all directions in the universe are equivalent, with respect to 
(T,,)” as well as geometrically. Is this quantum state actually invariant under the 
isometry group in all respects? Is it identical to any of the states found in Davies and 
Fulling (1977a) by separation of variables in non-static coordinate systems, which yield 
the same (T,,)? Can invariant states of the massless field be constructed by second 
quantization from irreducible representation spaces of S00(2,1), and if so what is their 
relation to the states associated with conformal coordinate systems? These questions 
will be left for future investigation. (The answers for mass zero may well be different 
from those for m2 >$r-’, corresponding to the principal series of representations.) 

For the T vacuum one finds 

e*:= -am = -(24m2)-’ sin-’(z/r), (4.37) 

where z is the proper distance from either horizon (see equation (2.34) and preceding 
text). Midway between them, on the line z = i r r ,  which is a geodesic, one has 

a, = app = (24wrz)-‘, A, = 0; (4.38) 

this suggests a temperature of kT = (2rrl-l if one regards the 7 vacuum as somehow 
fundamental for an observer located at z = bvr.  Figari e t d  (1975), studying a massive 

I 
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scalar field in two-dimensional de Sitter space, have shown that the Gibbs (thermal 
equilibrium) state of that temperature, defined relative to the field Hamiltonian, HT1 
which generates the 7-translation isometry group in region R, is invariant under 
S00(2,1). It is clear by the general argument in Israel (1976) that this state is the U 
vacuum of the massive field, restricted to R. (The 7) vacuum is the ground state of H,.) 
Gibbons and Hawking (1977) have concluded that an observer at z = itrr will detect 
thermal radiation with kT = (2m- ’ ;  the arguments are the same as those for an 
accelerated observer in flat space mentioned in 94.3. In this case the observer’s 
trajectory is geodesic-which makes the conclusion harder to ignore when discussing 
the observational relevance of our quantum field theory. 

The assumption of a fundamental role for H, and its eigenstates in the operational 
interpretation of the theory requires a physical justification. An attempt to provide one 
is the model particle detector of Unruh (1976) and Gibbons and Hawking (1977). 
There, however, what is considered is the integrated response over the detector’s entire 
wordline (on which 7 is the natural coordinate), despite the fact that elementary- 
particle events are approximately localized in time as well as space. The special role of 
H, thus appears to be built in from the beginning. Contrast the frequent proposal to 
extract the physical content of a quantum field theory in curved space by giving a 
distinguished role to the unit normal vector field over an entire space-like hypersurface 
(‘diagonalizing the instantaneous Hamiltonian’). The philosophy of the present work is 
that observables pertaining to a space-time point, such as T,,(x), should be defined 
covariantly with respect to that point, without reference to a larger submanifold, 
time-like or space-like, containing that point. Within that framework we have reached 
the conclusion that the neighbourhood around the focus of a boost-like Killing vector is 
‘maximally empty’ in the corresponding U vacuum. In two-dimensional de Sitter space 
this means that the local vacuum of a point x is not the 71 vacuum associated with any 
one of the time-like geodesics through x ,  but rather the U vacuum based on the 
boost-like Killing vector which leaves x invariant. Nevertheless, our theory attributes 
to this state a non-vanishing stress tensor (equation (4.36)), of a form and magnitude not 
unrelated to (equation (4.38)) what the particle detector is understood to indicate for 
that same state under the assumption that it is responding to ordinary positive-energy 
particles. Imagine a detector whose counting rate has been calibrated by exposure to 
thermal radiation in flat space at various temperatures and relative velocities. Suppose 
that the detector, now located in de Sitter space, gives the reading associated with the 
situation (4.38). A single number cannot determine all three components of TwY. 
(Indeed, one should not expect to measure all components simultaneously, since they 
do not commute.) It is entirely plausible that the counter reading is equally consistent 
with the classically forbidden situation (4.36)-perhaps even (though this is not 
essential to our point of view) that the detector actually measures fpp or Ifm/. (‘It is 
impossible to distinguish whether the detector is absorbing particles from a medium or 
emitting particles into a negative-energy void.’) However, the prediction of Gibbons 
and Hawking (1977) is that the counting rate (with respect to proper time) is indepen- 
dent of the Lorentz frame of the detector. Hence the detector cannot be responding to a 
classical thermal bath, which has a preferred rest frame; but it might well be responding 
to a state of affairs characterized by the invariant stress tensor (4.36). Therefore, 
accepting the cited analysis of particle detectors for the sake of argument, we tentatively 
find it not incompatible with, and even tending to support, the belief in a unique, 
observer-independent renormalized energy-momentum tensor, which takes the form 
(4.36) in the vacuum of two-dimensional de Sitter space. 
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An example which should be less controversial is the model (2.46),  where the central 
geodesic is surrounded by a flat neighbourhood. Here we find 

(4.39) 

The U vacuum stress in the central flat strip is that of an ordinary massless gas with 
k T  = ( 2 m ) - ' ,  while the r) vacuum stress is zero there. The normal modes of the r) 

quantization are ordinary plane waves there, and there is no reason to doubt that the 
eigenstates of H, have their usual significance for microscopic physics inside the flat 
region. Incidentally, the fact that 0;" = 0 outside the central strip is a special feature of 
the locally de Sitter geometry. In a more general case one would have a finite, non-zero 
flux parallel to the horizon, as in the U vacuum of the Schwarzschild model. A similar 
remark applies to the model studied in the next section. 

4.6. Double black holes 

Our example of two horizons not in equilibrium is the metric (2.44). Figure 6 represents 
qualitatively the energy fluxes near the horizons and the signs of the energy densities 
near the central joint of the model. The explicit expressions will be discussed only 
briefly. 

pisme 6. Expected energy densities and fluxes in R in various states of the model (2.44) 
with rz > r,. An infinite flux parallel to an horizon is generally accompanied by a finite flux 
(not shown) across the horizon. In the state 6, however, there is no flux across the past 
horizon. The complete emptiness of half of &e space in states U and U' is peculiar to tke de 
Sitter geometry. 
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The q vacuum stress can be calculated, as in any case where the metric is given as a 
function of the proper distance z (equations (2.21)-(2.22)), from 

e:, = e;, = +(96~)-'C$(ln C). 

e;,,, = -(48T)-1(e(-2) +c-'e(i))  = c-2e;z,2, 

The result is 

(4.40) 

(4.41) 

where ( 0  2.3) 2 is the distance from the joint, and c = r2 / r1 .  The stresses of the other 
states can be found from equation (4.41) from their boundary conditions and the 
conservation law, as in previous examples. Alternatively, one finds, for example, 0:" in 
the left half of R by a calculation using equation (2.45) and equation (2.33): 

(4.42) 

When c = 1 we recover the de Sitter universe (0  2.5);  the U and G states are the same. 
The limit c +CO (r2 >> rl)  is qualitatively like the Schwarzschild model; the right-hand 
horizon becomes a null infinity, and the q and 15 states become indistinguishable. In the 
opposite limit, r2 << rl (rl fixed), one sees that the left-hand black hole is cooler than the 
other one, and therefore will suffer a positive flux of energy over its future horizon if the 
initial conditions are vacuum: 

efVlv,>o on u1=0 (12 < r1). (4.43) 

In the immediate vicinity of 2 = 0 one has 

(4.44) 

(4.45) 

(4.46) 

( 4 . 4 7 ~ )  

(4.476) 

The significance of equations (4.47) is that if r 2 > r l ,  the central joint of the space 
radiates positive energy to the right and negative energy to the left, as indicated in 
figure 6. One can verify that the full expressions (including factors like cos-2(2/rl), 
omitted in equations (4.44)-(4.47)) satisfy the conservation law everywhere, including 
points on the joint. (Note that the discontinuity in the curvature R on the joint is only a 
step. The explicit components of V , , P v  = 0 in null coordinates are given by Davies and 
Fulling (1977a, equations (2.36)).) 

All the states investigated here for c # 1 must be regarded as singular, in that the 
expectation value of the stress tensor, physically normalized, becomes infinite near at 
least two of the four horizon surfaces (see, e.g., equations (4.42)). The same is true of all 
states which are invariant under translations in 7 ;  the discussion below equation (4.12) 
shows that the stress of such a state can differ from those studied here only by constant 
terms in T,, and Tu,, and then formulae like equations (4.11) show that such a term 
which cancels the infinity on one horizon surface will introduce an infinity on the 
opposite surface (as in the transition from the U vacuum to the 6 vacuum). However, 
there are many non-stationary states which are non-singular in this sense. For example, 
construct a null coordinate system for the entire space-time (cf Davies and Fulling 
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1977a, appendix) such that the new co6rdinates are twice-diff erentiable functions of 
( V,,  U,)  in a set 0, excluding the right horizon, and twice differentiable in (V,, U,) in 
0, excluding the left horizon, where O1 and O2 together cover the space. Then the 
stress tensor of the corresponding conformal vacuum (from equations (4.1)-(4.4)) is 
finite, having no singularity worse than the steps made inevitable (somewhere) by the 
discontinuity in the geometry at the joint. 

One might well argue that only the non-singular states are physically acceptable 
states of the field system, for the space-time manifold considered globally. Neverthe- 
less, the singular &-invariant states should be useful in discussing physics inside the 
region R. 

5. Physical summary 

We consider scalar quantum field theory in a space-time with a prescribed metric. 
When this background geometry is independent of time (i.e., has a time-like Killing 
vector, &), there is a strong temptation to assimilate the problem to conventional 
quantum theory, in the usual formulation of which the time evolution is assigned a 
strikingly fundamental role. In particular, one might expect the group of time transla- 
tions of the state vectors to be generated by a positive operator (Hamiltonian), whose 
ground state is the ‘vacuum’. Indeed, that is what results (under suitable technical 
assumptions) from second quantization of the solutions of the field equation which have 
positive frequency with respect to a, (if . ,  integrals over solutions that depend on the 
corresponding time coordinate as e-’or, o > 0). In other words, one is interpreting the 
positive-frequency solutions as the possible wavefunctions of particles, as in the 
ordinary Klein-Gordon theory. 

This procedure and interpretation are presumably physically trustworthy when the 
orbits of the Killing vector are also the geodesics normal to each constant-time 
hypersurface, as in the class of models we have called ‘ultrastatic’. In other cases, 
though, one must question whether T is really ‘time’ in such a fundamental sense. 
Sometimes a Killing vector leaves invariant a ‘focus’-a point, or a two-dimensional set 
which becomes a point in the ‘radius’-time plane when two irrelevant ‘angular’ 
variables are suppressed. Typically the space-time then divides into a region R where dT 
is time-like and future-directed, a region L where it is past-directed, and regions where 
it is space-like. These are separated by a cone-like &-invariant null surface, the 
horizon, along which 8, is a null vector. The prototype of such a Killing vector is the 
generator of homogeneous Lorentz transformations in Minkowski space. The locally 
time-like Killing vectors in the Schwarzschild and de Sitter solutions are other examples 
of great interest. Obviously, T has no geometrical right to be called ‘time’ near a focus; 
instead, it is a kind of angular polar coordinate. It comes as no surprise, therefore, that 
the corresponding ‘vacuum’ state for region R (the 7 vacuum) is physically peculiar. 
The Green functions and expectation values of field observables behave near the focus 
and horizon in singular ways which are not attributable to any peculiarity of the 
geometry there. At the same time there may be other Killing vectors time-like in 
regions overlapping R, but with horizons in different places or with no horizons; hence it 
is clear that the 7 vacuum has no unique, fundamental significance. De Sitter space 
provides a particularly good example: all locally time-like Killing vectors are geometri- 
cally alike (conjugate under the isometry group); each time-like geodesic is an orbit of 
one Killing vector (although most orbits are not geodesic); different geodesics through 
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the same point correspond to different horizons, and hence thoroughly different q 
vacuum states. 

This paper investigates how ‘vacuum’, or ‘positive frequency’, might be defined near 
the horizon in a geometrically and physically sensible way, without prejudicial refer- 
ence to the Killing vector. (The resulting theory will not have a Hamiltonian formula- 
tion, in general.) The key observation, due to Unruh (1976), is that the horizon can be 
embedded in a flat or ultrastatic space-time; equivalently, that each of the two null 
surfaces making up the horizon is invariant under translation in its affine parameter, V 
or U. (This is in addition to the original Killing symmetry, which reduces on the horizon 
to dilation of V accompanied by contraction of U-i.e., a Lorentz transformation in the 
ultrastatic space.) Initial data on the horizon should be classed as ‘positive frequency’ (it 
is proposed) if they correspond to positive-frequency solutions in the ordinary sense in 
the fictitious ultrastatic model; this amounts to saying that the data on the horizon 
surface U = 0 are positive-frequency functions of V (like e-=”), and vice versa. The 
criterion of analyticity in the lower half-plane of Vor U enables one to construct a basis 
of such functions out of the solutions in R and L of definite frequency with respect to d,. 

An interesting question not investigated here is whether a useful general notion of 
vacuum conditions ut a point can be defined in terms of positive frequency with respect 
to affine parameters on the light cone of the space-time point considered, even when the 
cone does not have the symmetries associated with ultrastatic embedding. 

In most cases the region R terminates (in the direction away from the horizon) either 
at another horizon or at infinity. In the latter case the conformal null infinities, 9*, are 
in many ways formally analogous to horizon surfaces. (Thus R is to be visualized as a 
square standing on one corner-cf figures 2 and 6.) If the vacuum state defined as above 
relative to one horizon coincides with that defined in the analogous way relative to the 
other horizon, then we say that the two horizons are in equilibrium. (In the terminology 
of Gibbons and Hawking (1977), they have equal surface gravity.) The physical 
significance of the equilibrium vacuum state is brought out by explicit calculations of the 
expectation value of the energy-momentum tensor of a massless scalar field in 
two-dimensional models. There is no flux of energy across the horizon surfaces, 
although in general there is a finite flux parallel to (and on) each of the four horizon 
surfaces, which vanishes as one of the surfaces transverse to the flow is approached. 
The ‘thermal’ character of this radiation is visible in the Planckian form of the 
Bogolubov coefficients describing the relative contributions of q-positive-frequency 
and q-negative-frequency solutions in R to the basis modes which define the vacuum. 
Therefore, one expects the essential features found for the two-dimensional massless 
field to be true of the general case. Since the vacuum stress is well behaved everywhere, 
this state is physically more acceptable than the original 7 vacuum. Nevertheless, it 
probably still does not have a unique, absolute significance, since the defining boundary 
conditions arbitrarily assign a special role to the horizons. A possible exception to this 
last remark is two-dimensional de Sitter space, where there are no fluxes anywhere; that 
model deserves further study. 

If the horizons are not in equilibrium, it is not possible to impose the vacuum 
boundary condition simultaneously on two null surfaces on opposite sides of R. The 
condition thus suggests four distinct candidates for vacuum state, depending on which 
adjacent pair of the four horizon surfaces are privileged to be cleansed of their 
transverse flux. Across the other surfaces a flux of the Hawking type (Hawking 1975) 
then appears. The states in which the full left or right horizon is privileged at the 
expense of the other horizon have been called the U and 6 vacuum. If the past halves of 
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both horizons are made vacuous, then we have the initial or 6 vacuum. The 6 vacuum is 
not invariant under time reversal (though it is under T translation), and it consequently 
has a non-vanishing energy flux in the rest frame of the Killing vector (T, # 0). The 
two-dimensional massless calculations show, as expected, that the flux across the 
privileged horizon surfaces vanishes. In general, however, the fluxes parallel to these 
surfaces and across the other two can be as singular as in the 7 vacuum. A ‘smooth’ 
quantum state for horizons not in equilibrium is necessarily not invariant under the 
isometry group generated by the Killing vector. In an asymptotically flat model, the 
coordinates associated with the Killing vector are also the geometrically natural (affine) 
coordinates on the ‘right-hand horizon’, 9*, so the 0’ vacuum is the same as the q 
vacuum. In this special case the U vacuum may be considered physically non-singular, 
since the infinity otherwise encountered at the right horizon is spread out here into a 
constant Hawking flux, both incoming and outgoing. (In the Killing frame this appears 
as a static thermal bath at spatial infinity.) For massive fields, boundary conditions on 
4’ must be re-phrased into conditions on the asymptotic behaviour of solutions in real 
space and time, but then the 6 vacuum and 6 vacuum are constructed in the same way as 
before. 

We have appealed to a general two-dimensional massless scalar theory, whose 
principal physical conclusion is that the expectation value of the energy-momentum 
tensor in any state is a sum of three terms: (i) A pure trace, Tu, cc Rg,,, is completely 
determined by the geometry at the point in question and hence unambiguously can be 
regarded as ‘vacuum polarization’. (ii) A traceless term (with components e,, and e,, in 
null coordinates), which satisfies together with the trace term the conservation law 
V,TP, = 0, is interpreted as the energy-momentum tensor of the matter created or 
annihilated by the curvature of space-time. (The trace effectively acts as the source of 
this radiation.) (iii) An additional traceless term is conserved by itself, and hence has 
components of the form Tu,(u) and Tu,(u). It describes massless matter propagating 
unmolested against the curved space-time background; its value is different in different 
quantum states. (The classical language of ‘matter’ or ‘radiation’ must not be taken too 
literally, since we are dealing with quantum states which are coherent superpositions of 
the various classical possibilities.) One could define the vacuum as the state in which 
term (iii) is zero. In general, the division of the traceless part into terms ( i i )  and ( i i i )  is 
quite arbitrary, and it is impossible to settle on a particular state as ‘the physical vacuum’. 
In the context of the present work the 6 vacuum can be characterized as the state in 
which (inside region R, at least) the matter represented by term (2) is entirely created, 
rather than destroyed. 
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